به نام خدا

ارشاد بپردازید

امتحان پایان ترم درس محاسبات عددی

تاریخ: همه محدّبیات تا ۴ روز اعمال شوند

زمان: ۱۲ دقیقه

۱. دستگاه میزو شناور نرمال $S(\beta, k, L, U)$ یا در نظر گرفته شود. تعداد اعداد قابل نمایش و همچنین برگرکین و کوچکترین عدد مثبت قابل نمایش در این دستگاه را محاسبه کنید.

۲. (آ) مقادیر p و k را در رابطه زیر محاسبه کنید.

$ f^{(k)}(x) = \frac{f(x + h) - f(x - h)}{2h} + O(h^p)$

(ب) آگر جداکردن خطای محاسبه تابع در مسائل محاسباتی مرور استفاده برابر با 4 باشد، مقادیر بهینه طول گام h را در رابطه تقسیمی $h_{\text{opt}} = ?$ زیر بدست آورید.

۳. معادله زیر را در نظر گیرید.

$2x^2 - 1 - \sin x = 0$

(آ) نشان دهید این معادله دارای یک ریشه در بازه $[1, 0]$ است.

(ب) با استفاده از روش نیوتن و با $x_0 = 1$ تقریبی برای ریشه معادله با دقت 10^{-3} بدست آورید.

(ب) آگر بخواهید این ریشه را با روش دیویشی و با همان دقت بدست آورید، چند تكرار لازم است؟

(ت) در محیط نرم‌افزاری MATLAB چه دستوری برای ریشه‌یابی بکار می‌روید؟ برای حل معادله با داده بر محیط نرم‌افزاری MATLAB چگونه عمل می‌کنید؟

۴. (آ) خطای روش ذونترفی مرکب را بدست آورید.

(ب) مقادیر تقریبی انتگرال زیر را با روش ذونترفی مرکب و به ازای $h = 0.2$ بدست آورید.

$I = \int_0^1 \frac{1}{1 + x^3} dx$

۵. (آ) در نظر گرفتی در نظر گرفتی. می‌خواهید تقریب این تابع با استفاده از درون‌نیایی قطعه‌ای خطی بدست آوریم، $f(x) = e^x - 2\sin x$ تعداد نقاط شکست را به گونه‌ای محاسبه کنید که خطای تقریبی از 10^{-4} کمتر باشد.

۶. مساله مقدار اولیه زیر را در نظر گرفتی.

$ y' = \frac{1}{x^2 + y^2 + 1}, \quad y(0) = 1.$

مقدار تقریبی $y(0.2)$ را با روش رانگه-کوتا مربی دوم بدست آورید $(h = 0.1)$.

$ \frac{1}{x^2 + y^2 + 1}, \quad y(0) = 1.$
به نام خدا
amatihan-dres-ashaniyahi-ba MATLAB

زمان: ٩٠ دقیقه

۱. شکل کلی استفاده از دستورات زیر را بیان کرده و توضیح مختصری را در مورد عملکرد این دستورات بنویسید.

rand, zeros, diff, eig, solve, max, sort, diary

۲. سه روش مختلف برای محاسبه زمان یک قطعه برنامه را بنویسید.

۳. توضیح دهید که چگونه می‌توان مساله برنامه ریزی خطی زیر را در محیط MATLAB حل کرد.

\[
\begin{align*}
\text{max} & \quad x_1 + 3x_3 \\
\text{s.t.} & \quad x_1 + x_2 + x_3 = 1 \\
& \quad x_1 - x_2 \leq 1 \\
& \quad -2x_1 + 8x_2 - 3x_3 \geq -3 \\
& \quad x_i \in [1,5], i = 1,2,3
\end{align*}
\]

۴. توضیح دهید که چگونه می‌توان معادله دیفرانسیل زیر را در محیط MATLAB حل کرد.

\[
y'' - y''' - 4y' + 4y = r^2
\]

۵. توضیح دهید که چگونه می‌توان رویه را در محیط MATLAB رسم کرد.

۶. فرض کنید که آرایه‌های زیر در محیط MATLAB تعیین شده‌اند.

\[
x = \text{linspace}(0,2*\pi,100);
y = \sin(x);
z = \exp(-x);
\]

با استفاده از آرایه‌های فوق و بدون فرمول‌های توابع exp و sin توضیح دهید که چگونه می‌توان تابع \(y = e^{-x} \sin(x) \) را در فاصله \([0,4\pi]\) در محیط MATLAB رسم کرد.